Pagkasalimuot ng Kita
factor.formula
I-fit ang isang time series regression model sa taunang kita ng kumpanya j.
Kalkulahin ang residual standard deviation, na siyang factor ng pagkasalimuot ng kita.
sa:
- :
Ang taunang kita ng kumpanya j sa taon t ay maaaring piliin mula sa mga tagapagpahiwatig tulad ng kita kada bahagi (EPS) at netong kita na maiuugnay sa mga shareholder, na dapat manatiling pare-pareho.
- :
Ang constant term sa first-order autoregressive model ng serye ng oras ng kita ng firm j.
- :
Ang autoregression coefficient ng first-order autoregression model ng serye ng oras ng kita ng kumpanya j ay sumusukat sa pagtitiyaga ng kita. Kung mas malaki ang absolute value, mas malaki ang epekto ng kasalukuyang kita sa kita ng nakaraang panahon. Kapag ang coefficient ay positibo, karaniwan itong nagpapahiwatig na ang kita ay may tiyak na inertia.
- :
Ang residual term ng first-order autoregressive model ng serye ng oras ng kita ng kumpanya j sa taon t ay nagpapakita ng bahagi ng pagkasalimuot ng kita na hindi maipaliwanag ng modelo, at ipinapalagay na sumusunod ito sa isang distribution na may mean na 0.
- :
Ang residual variance ng first-order autoregressive model ng serye ng oras ng kita ng firm j ay sumusukat sa hindi mahuhulaan na bahagi ng serye ng kita.
- :
Ang residual standard deviation ng first-order autoregressive model ng serye ng oras ng kita ng kumpanya j, i.e., pagkasalimuot ng kita, ay sumusukat sa amplitude ng pagkasalimuot ng kita.
factor.explanation
Kung mas maliit ang halaga ng factor ng pagkasalimuot ng kita, mas maliit ang pagkasalimuot ng serye ng oras ng kita ng kumpanya, mas mataas ang kakayahang mahulaan ang kita, at mas matatag ang kita nito. Ang factor na ito ay maaaring gamitin sa mga estratehiya sa pagpili ng stock upang i-screen ang mga kumpanya na may matatag na kita at mataas na kalidad. Sa kabaligtaran, kung mas mataas ang halaga ng factor, mas malaki ang pagkasalimuot ng kita at mas hindi matatag ang kita. Sa mga praktikal na aplikasyon, ang pagpili ng mga tagapagpahiwatig ng kita (tulad ng EPS, netong kita, atbp.) at ang modelong regression na ginamit ay dapat isaalang-alang (bukod sa first-order autoregressive model, ang iba pang mga modelo ay maaari ding subukan). Ang factor na ito ay isang low-frequency factor at karaniwang ina-update taun-taon.